
Evaluation of nearly singular integrals in boundary element
contour and node methods for three-dimensional linear

elasticity

Subrata Mukherjee a,*, Mandar K. Chati a, Xiaolan Shi b

a Department of Theoretical and Applied Mechanics, 212, Kimball Hall, Cornell Univeristy, Ithaca, NY 14853, 1503, USA
b DeHan Engineering Numerics, 95, Brown Road, Box 1016, Ithaca, NY 14850, USA

Received 27 October 1999

Abstract

This article addresses the issue of nearly singular integrals that arise in boundary element methods (BEMS) when one

tries to evaluate displacements and stresses at points inside a body that lie close to its bounding surface. An e�cient new

approach is proposed for the evaluation of these integrals. The same issue is then discussed in the context of the

boundary contour method (BCM) and the boundary node method (BNM). Finally, numerical results, from both the

BCM and the BNM, are presented for an illustrative problem. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Nearly singular integrals in the boundary element method

It has been known in the boundary element method (BEM) community for many years, dating back
atleast to Cruse (1969), that one experiences di�culties when trying to numerically evaluate variables of
interest at a point inside a body B that is close to its bounding surface oB. In three-dimensional (3-D) linear
elasticity, for example, these di�culties arise when one tries to evaluate displacement components at such
points, and such di�culties are usually compounded when one tries to evaluate the stress components there.
The source of these di�culties is the fact that the traction kernel (in the standard displacement boundary
integral equation (BIE)) becomes ``nearly strongly singular'' (O(1=r2), where r is the distance between an
internal source point p close to oB and the nearest ®eld point Q on oB), while one of the kernels in the stress
BIE becomes ``nearly hypersingular'' (O(1=r3)) as an internal point p approaches the bounding surface oB.

BEM reserachers have proposed various numerical schemes for accurately computing such nearly sin-
gular integrals. Cruse and Aithal (1993) have proposed a semi-analytical approach using Taylor series
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expansions for the kernels ± with the singular part being integrated analytically and the remaining part
computed using lower order Gaussian integration. Huang and Cruse (1993) present another approach
involving a coordinate transformation that can smooth out the rapid variations of nearly singular kernels.
Also, the above-referenced papers present comprehensive reviews of earlier work on the subject.

Other approaches include Gaussian integration with subdivisions (and usually many Gauss points),
kernel cancellation methods (Nakagawa, 1993), the auxiliary surface of ``tent'' method (Lutz et al., 1992)
®rst applied this idea to evaluate singular and nearly singular integrals; however, Liu et al. (1993) reported
the need for excessive computational e�ort when applying this idea for evaluating nearly singular ones) and
the line integral (Stoke regularization) method (Krishnasamy et al., 1994; Liu et al., 1993; Liu, 1998). A
brief review of some of the above methods is available in Liu et al. (1993).

1.2. The line integral method

This approach is considered by the authors of this article to be the most elegant one in the literature to
date. The method is described very clearly, in detail, in Liu (1998). The basic idea is to convert the surface
integral of the traction kernel, on a boundary element on which it becomes nearly singular, into a weakly
singular surface integral, on that element, and a line integral around the bounding contour of that element.
The solid angle term, which is a part of this integral, is also converted into a line integral. This procedure
regularizes the integral, provided that the bounding countour of the surface element in question is chosen to
be far from the internal point p where the variable of interest needs to be evaluated. This approach is critical
for solving BIEs in thin bodies and has been very successfully applied for solving such problems (e.g.
Krishnasamy et al., 1994; Liu, 1998; Luo et al., 1998; Liu et al., 1999.)

1.3. Continuous boundary integral equations

The line integral method described in the previous paragraph is excellent for accurately evaluating nearly
singular integrals in thin structures. It is quite common, however, to encounter situations in which one has
to evaluate displacements and stresses at internal points close to the boundary in bulky solid bodies. While
the line integral method described above can also be used in such situations, a new method, which is ex-
tremely easy to implement in standard BEM codes, is described in this article. The current version of the
new method is designed, as a post-processing step, for cases in which an evalaution point (at which one
desires to determine the values of variables of interest) is an internal point that is close to the boundary of a
bulky solid. It is currently not recommended for thin shell problems in which one typically encounters
nearly singular integrals for evaluation points situated on the boundary of a body, when ®rst setting up the
BIE. It is felt, however, that the method presented in this article can be extended, in future, for use in thin
shell problems.

The proposed method is based on continuous displacement and stress BIEs that already exist in the
BEM literature (Cruse and Richardson, 1996). The reader is also referred to Rudolphi (1991) and
Krishnasamy et al. (1992), where such ideas were ®rst proposed in the context of Laplace's equation. These
equations are called continuous because, under certain smoothness assumptions on the variables, their
limits to the boundary (LTBs) exist. Typically, these equations have been used for the purpose of deriving
regularized BIEs by taking such LTBs. In the present article, however, they are put to a novel and di�erent
use. Instead of taking LTBs, they are used directly to accurately evaluate nearly singular integrals that arise
when the displacements and stresses (in linear elasticity) need to be evaluated at internal points that are
close to the boundary of a bulky solid body. Details of the procedure are described later in this article.

The ideas described above are implemented in this article in the context of both the BCM and the BNM.

7634 S. Mukherjee et al. / International Journal of Solids and Structures 37 (2000) 7633±7654



1.4. The boundary contour method

The usual BEM, for 3-D linear elasticity, requires numerical evaluations of surface integrals on
boundary elements on the surface of a body (Mukherjee, 1982). Nagarajan et al. (1994, 1996) have recently
proposed a novel appraoch, called the boundary contour method (BCM), that achieves a further reduction
in dimension! The BCM, for 3-D linear elasticity problems, only requires numerical evaluation of line
integrals over the closed bounding contours of the usual (surface) boundary elements.

The central idea of the BCM is the exploitation of the divergence-free property of the usual BEM in-
tegrand and a very useful application of Stokes' theorem, to analytically convert surface integrals on
boundary elements to line integrals on closed contours that bound these elements. Lutz (1991) ®rst pro-
posed an application of this idea for the Laplace equation and Nagarajan et al. (1994) generalized this idea
to linear elasticity. It is important to mention here that line integrals, evaluated in the 3-D BCM along
opposite directions on a common line shared by contiguous boundary elements, are, as expected, equal and
opposite. These integrals, however, must be separately evaluated in the BCM in order to obtain a system of
linear algebraic equations that is necessary to solve for the boundary unknowns. Details are available in the
BCM references cited in this article.

Numerical results for two-dimensional (2-D) problems, with linear boundary elements, are presented in
Nagarajan et al. (1994) while results with quadratic boundary elements appear in Phan et al. (1997). The
BCM for 3-D elasticity problems, with quadratic boundary elements, is presented in Nagarajan et al. (1996)
and Mukherjee et al. (1997). Hypersingular boundary contour formulations, for 2-D (Phan et al., 1998) and
3-D (Mukherjee and Mukherjee, 1998) linear elasticity, have been proposed recently.

An interesting situation arises when one considers the evaluation of displacements and stresses in the
BCM at internal points close to the boundary oB of a bulky body B. The BCM has line integrals that are
already ``Stoke regularized'', provided that the contours are far from the internal point in question! The
BCM implementation described in the papers quoted in the above paragraph only involve line integrals,
with the sole exception of the solid angle which is evaluated as a surface integral (for reasons that are
described, for example, in Mukherjee and Mukherjee, 1998). Therefore, one way to evaluate nearly singular
integrals in the BCM is to use the line integral formula (Eq. (16) Liu, 1998) for the solid angle . Another is
to use boundary contour versions of the continuous BIEs mentioned above and still evaluate the solid angle
as a surface integral. The second approach is described and implemented in this work.

1.5. The boundary node method

Mukherjee and Mukherjee (1997) have recently pioneered a breakthrough computational approach
called the boundary node method (BNM) (Mukherjee and Mukherjee, 1997; Kothnur et al., 1999; Chati
and Mukherjee, in press; Chati et al., 1999; Chati et al., 2000). This method is a combination of the moving
least squared (MLS) interpolation scheme and the standard BIE method. The method divorces the tradi-
tional coupling between spatial discretization (meshing) and interpolation (as commonly practiced in the
®nite element method (FEM) or in the BEM). Instead, a ``di�use'' interpolation, based on MLS interpo-
lants, is used to represent the unknown functions; and surface cells, with a very ¯exible structure (e.g. any
cell can be arbitrarily subdivided without a�ecting its neighbors) are used for integration (Figs. 1 and 2).
Thus, the BNM retains the meshless attribute of the MLS interpolants and the dimensionality advantage of
the BEM. As a consequence, the BNM only requires the speci®cation of points on the 2-D bounding surface
of a 3-D body, together with unstructured surface cells, thereby practically eliminating the meshing
problem. In contrast, the FEM needs volume meshing, the BEM needs surface meshing, and the element-
free Galerkin (EFG) method (see, e.g. Belytschko et al. (1996) for a recent overview) needs points
throughout the domain of a body.
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It should be mentioned here that the discontinuous element BEM, in which the unknown functions are
modeled as piecewise constant on elements, also allows an arbitrary subdivision of elements as illustrated in
Fig. 1. Such an interpolation scheme, however, is not accurate and is not currently popular in solid me-
chanics analysis with the BEM. In contrast, the BNM truly divorces interpolation (carried out at nodal
points) from discretization (cells are only required for integration). The di�use interpolation scheme em-
ployed in the BNM is completely independent of the cell structure and the method allows a completely
¯exible cell structure as shown in Fig. 1. Thus, for example (as has been done in the present work), one can
employ one node per cell in the BNM and still have a high order of interpolation of the boundary variables.

1.6. Outline of the present paper

This article is organized as follows: The new idea, for regularizing nearly singular integrals in the BIEs
for 3-D linear elasticity, is ®rst presented for the BEM in Section 2. The matter of evaluation of dis-

Fig. 1. BNM with nodes and cells.

Fig. 2. BEM with nodes and elements.
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placements, as well as stresses, at internal points that are close to the boundary of a body, are addressed
here. This section is followed by descriptions of extensions of this idea to the BCM (Section 3) and to the
BNM (Section 4). Section 5 presents numerical results for a selected problem ± that of a sphere under
internal pressure ± using the BCM and BNM. A ®nal section with concluding remarks completes this
article.

It is of course well known that for all of these boundary based methods (BEM, BCM and BNM), the ®rst
step is to solve the primary boundary value problem (BVP) and obtain all the displacements and tractions
on the surface of a body. This step is then followed by evaluation of displacements and stresses at points
inside the body. It is very important to state here that, in the interest of brevity, only the second step is
discussed in this article. The reader is referred to the references cited in the previous paragraphs, as well as,
of course, books on the BEM (Mukherjee, 1982; Banerjee, 1994), for detailed discussions of procedures for
solving the primary BVP by these boundary methods.

2. Nearly singular integrals in the BEM

2.1. Displacements at internal points close to the boundary

The starting point is the well-known BIE, for 3-D linear elasticity, at an internal point p in a body B
(Rizzo, 1967):

uk�p� �
Z

oB
�Uik�p;Q�rij�Q� ÿ Rijk�p;Q�ui�Q��nj�Q�dS�Q�: �1�

Here, oB is the bounding surface of a body B with in®nitesimal surface area dS � dSn, where n is the unit
outward normal to oB at a point on it. The stress tensor is r and the displacement vector is u. A source
point is denoted as p (or P) and a ®eld point as q (or Q) (Upper case letters denote points on oB while lower
case letters denote points inside B.) The BEM Kelvin kernels U and R are available in many referenes. They
are given in Appendix A for completeness.

Alternatively, one can write Eq. (1) in terms of the traction s � r � n and traction kernel T as:

uk�p� �
Z

oB
�Uik�p;Q�si�Q� ÿ Tik�p;Q�ui�Q��dS�Q�: �2�

The new kernel T is also given in Appendix A.
A continuous version of Eq. (1) is available in the literature (Cruse and Richardson, 1996). This equation

has the form:

uk�p� � uk�P̂ � �
Z

oB
�Uik�p;Q�rij�Q� ÿ Rijk�p;Q�fui�Q� ÿ ui�P̂�g�nj�Q�dS�Q�; �3�

where p 2 B is now an internal point close to oB and a target point P̂ 2 oB is close to the point p (see Fig. 3).
An alternative form of Eq. (3) is:

uk�p� � uk�P̂ � �
Z

oB
�Uik�p;Q�si�Q� ÿ Tik�p;Q�fui�Q� ÿ ui�P̂ �g�dS�Q�: �4�

Eq. (3) or Eq. (4) is called ``continuous'' since it has a continuous limit to the boundary (LTB as
p ! P̂ 2 oB) provided that ui�Q� 2 C0;a (i.e., H�older continuous). Taking this limit is the standard approach
for obtaining the well-known regularized form of Eq. (1):
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0 �
Z

oB
�Uik�P ;Q�rij�Q� ÿ Rijk�P ;Q�fui�Q� ÿ ui�P �g�nj�Q�dS�Q�; �5�

where, in keeping with standard notation, the target point P̂ has been replaced by a generic boundary point
P.

In this work, however, Eq. (3) or Eq. (4) is put to a di�erent, and novel use. It is ®rst observed that Tik in
Eq. (4) is O�1=r2�p;Q)) as Q! p, whereas fui�Q� ÿ ui�P̂ �g is O�r�P̂ ;Q)) as Q! P̂ . Therefore, as Q! P̂ , the
product Tik�p;Q�fui�Q� ÿ ui�P̂ �g, which is O�r�P̂ ;Q�=r2�p;Q��;! 0! As a result, Eq. (4) or Eq. (3) can be
used to easily and accurately evaluate the displacement components uk�p� for p 2 B close to oB. This idea is
the main contribution of this article.

It is noted here that while it is usual to use Eq. (1) or Eq. (2) to evaluate uk�p� when p is far from oB, Eq.
(3) or Eq. (4) is also valid in this case (the target point P̂ can be chosen as any point on oB when p is far from
oB). Therefore, it is advisable to use the continuous Eq. (3) or Eq. (4) universally for all points p 2 B. This
procedure would eliminate the need to classify, apriori, whether p is near to, or far from oB.

2.2. Displacement gradients and stresses at internal points close to the boundary

The BIE (Eq. (1)) can be di�erentiated with respect to xn�p� to give:

uk;n�p� � ÿ
Z

oB
�Uik;n�p;Q�rij�Q� ÿ Rijk;n�p;Q�ui�Q��nj�Q�dS�Q�: �6�

Please note that the negative sign in the right hand side of Eq. (6) arises from the fact that, following
usual convention, the kernel derivatives are written with respect to ®eld point coordinates yn�q�. (In the rest
of this paper, a source point p (or P) has coordinates x, the target point P̂ has coordinates x̂ and a ®eld
point q (or Q) has coordinates y.)

An alternative form of Eq. (6), using Hooke's law, becomes:

rij�p� �
Z

oB
�Dijk�p;Q�sk�Q� ÿ Sijk�p;Q�uk�Q��dSQ: �7�

The new kernels D and S are available in many references. They are given in Appendix A for com-
pleteness of this article.

Fig. 3. A body with source point p, ®eld point Q and target point P̂ .
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Continuous versions of Eqs. (6) and (7) can be written as (Cruse and Richardson, 1996):

uk;n�p� � uk;n�P̂ � ÿ
Z

oB
Uik;n�p;Q��rij�Q� ÿ rij�P̂ ��nj�Q�dS�Q�

�
Z

oB
Rijk;n�p;Q��ui�Q� ÿ ui�P̂ � ÿ ui;`�P̂ ��y`�Q� ÿ x`�P̂ ���nj�Q�dS�Q�; �8�

rij�p� � rij�P̂� �
Z

oB
Dijk�p;Q��sk�Q� ÿ rkm�P̂ �nm�Q��dS�Q�

ÿ
Z

oB
Sijk�p;Q��uk�Q� ÿ uk�P̂ � ÿ uk;`�P̂ ��y`�Q� ÿ x`�P̂ ���dS �Q�: �9�

This time, the integrands in Eq. (8) or Eq. (9) are O�r�P̂ ;Q�=r2�p;Q�� and O�r2�P̂ ;Q�=r3�p;Q�� as Q! P̂ .
As for the continuous BIEs in the previous section, the integrands in Eqs. (8) and (9)! 0 as Q! P̂ . Either
of these equations, therefore, are very useful for evaluating the stresses at an internal point p that is close to
oB. Of course (please see the discussion regarding displacements in the previous section), they can also be
conveniently used to evaluate stresses at any point p 2 B.

Henceforth, the use of Eqs. (1), (2), (6) or (7) will be referred to as the standard method, while use of
Eqs. (3), (4), (8) or Eq. (9) will be referred to as the new method.

3. Nearly singular integrals in the BCM

3.1. Displacements at internal points

A brief summary of the BCM is presented below. The reader is referred to, for example, Mukherjee et al.
(1997) or Mukherjee and Mukherjee (1998) for a detailed description of the method.

The ®rst step is to write Eq. (1) as:

uk�x� �
Z

oB
�Uik�x; y�rij�y� ÿ Rijk�x; y�ui�y��ej � dS�y� �

Z
oB

Fk � dS�y�; �10�

where ej; j � 1; 2; 3 are global Cartesian unit vectors.
It has been shown (Nagarajan et al., 1994, 1996; Mukherjee et al., 1997) that the integrand vector Fk in

Eq. (10) is divergence-free and that the surface integral in it, over an open surface patch S 2 oB, can be
converted to a contour integral around the bounding curve C of S, by applying Stokes' theorem. Therefore,
vectors Vk exist such that:Z

S
Fk � dS �

I
C

Vk � dr: �11�

As the vectors Fk contain the unknown ®elds u and r, shape functions must be chosen for these variables,
and potential functions derived for each linearly independent shape function, in order to determine the
vectors Vk. Also, since the kernels in Eq. (10) are functions only of zk � yk�Q� ÿ xk�P � (and not of the source
and ®eld coordinates separately), these shape functions must also be written in the coordinates zk in order to
determine the potential vectors Vk. Finally, these shape functions are global in nature and are chosen to
satisfy, a priori, the Navier±Cauchy equations of equilibrium. The weights, in linear combinations of these
shape functions, however, are de®ned piecewise on boundary elements.
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Quadratic shape functions are used in this work. One has, on a boundary element,

i �
X27

a�1

bauai�yk� �
X27

a�1

b̂a�xk�uai�zk�; �12�

Rij �
X27

a�1

baraij�yk� �
X27

a�1

b̂a�xk�raij�zk�; �13�

where uai; raij (with i; j � 1; 2; 3 and a � 1; 2; . . . ; 27) are the shape functions and ba are the weights in the
linear combinations of the shape functions. Each boundary element has, associated with it, 27 constants ba

which will be related to physical variables on that element. This set of b's di�er from one element to the next.
The displacement shape functions for a � 1; 2; 3 are constants, those for a � 4; . . . ; 12 are of the ®rst

degree and those for a � 13; . . . ; 27 are of the second degree. There are a total of 27 linearly independent
(vector) shape functions Ua. The shape functions for the stresses are obtained from those for the displace-
ments through the use of Hooke's law. The shape functions uai and raij are given in Mukherjee et al. (1997).

It is easy to show that the coordinate transformation zk � yk ÿ xk �k � 1; 2; 3�, results in the constants b̂j

being related to the ba's as follows:

b̂i�xk� �
X27

a�1

Sia�xk�ba; i � 1; 2; 3; �14�

b̂k�xm� �
X27

a�1

Rna�xm�ba; k � 4; 5; . . . ; 12; n � k ÿ 3; �15�

b̂a � ba; a � 13; 14; . . . ; 27; �16�
where

Sia�xk� � uai�xk�; i � 1; 2; 3; a � 1; 2; . . . ; 27;

Rka�xm� � oua`�ym�
oyj

����
xm

; k � 1; 2; . . . ; 9; a � 1; 2; . . . ; 27

with j � 1� b�k ÿ 1�=3c and ` � k ÿ 3j� 3. Here, the symbol bnc, called the ¯oor of n, denotes the largest
integer less than or equal to n.

It is useful to note that the matrices S and R are functions of only the source point coordinates (x1; x2; x3).
The procedure for designing boundary elements in the 3-D BCM is discussed in detail in Nagarajan et al.

(1996) and Mukherjee et al. (1997) . A set of primary physical variables ak, whose number must match the
number (here 27) of arti®cial variables bk on a boundary element, are chosen ®rst. A square invertible
transformation matrix T relates the vectors a and b on a boundary element m according to the equation:

a
m � T

m
b
m
: �17�

Finally, Eq. (1) can be shown to have the boundary contour version (Mukherjee et al., in press):

uk�x� � 1

2

XM

m�1

X27

a�13

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jntzn dzt

�
T ÿ1

m

a
m

� �
a

�
XM

m�1

X12

a�14

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jntzn dzt

�
R�p�Tÿ1

m

a
m

� �
aÿ3

�
XM

m�1

X3

a�1

I
Lm

Dajk�z�dzj

� �
S�p�Tÿ1

m

a
m

� �
a

�18�
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with I
Lm

Dajk dxj � ÿ
Z

Sm
Rajkej � dS

� 1

8p�1ÿ m�
I

Lm
�kij

r;a r;i
r

dxj � 1ÿ 2m
8p�1ÿ m�

I
Lm
�akj

1

r
dxj � H

4p
dak: �19�

Here Lm is the bounding contour of the surface element Sm. In the above, H is the solid angle (subtended
by a surface element m at a collocation point P), which is de®ned as

H �
Z

Sm

r � dS

r3
: �20�

Also, T
m

and a
m

are the transformation matrix and primary physical variable vectors, respectively, on
element m, and �ijk is the usual alternating symbol.

The surface integral formula (20), is very easy to implement in a computer code, and has been usesd to
obtain the numerical results reported in this article. Please note that the solid angle calculation from Eq.
(20) is purely geometrical and does not involve any physical variables. This is the only time that a surface
integral is evaluated in the BCM.

3.2. Displacements at internal points close to the boundary

The ®rst step is to choose the target point P̂ at or close to the centroid of a boundary element. Since all
other terms in Eq. (18), except the solid angle, are evaluated as contour integrals, these terms are already
regularized. There are atleast two ways of regularizing the solid angle term in Eq. (18). The ®rst is to
evaluate the solid angle H (see Eq. (20)) as a line integral by employing Eq. (16) of Liu (1998) . The second
is to use a boundary contour version of Eq. (3) and still evaluate H as a surface integral. The latter ap-
proach is adopted in this work.

The boundary contour version of Eq. (3) can be obtained easily. This equation is

uk�p� � uk�P̂ � � 1

2

XM

m�1

X27

a�13

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jstzs dzt

�
Tÿ1

m

a
m

� �
a

�
XM

m�1

X12

a�4

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jstzs dzt

�
R�p�Tÿ1

m

a
m

� �
aÿ3

�
XM

m�1

X3

a�1

I
Lm

Dajk�z�dzj

� �
S�p�Tÿ1

m

a
m

�
ÿ S�P̂ �bP̂

�
a

; �21�

where

uk�P̂ � � b̂P̂
k �

X27

a�1

Ska�P̂ �bP̂
a : �22�

It is important to note that, on a singular element (i.e., when integration is being carried out on an
element that contains the point P̂ ) one has:

Tÿ1
m

a
m � b

m
� bP̂ : �23�
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In this case, the numerator of the last integrand in Eq. (21) is O�r�p; P̂ ��, whereas the denominator in the
solid angle term is O�r2�p; P̂ �� as Q! P̂ , so that Eq. (21) is ``nearly weakly singular'' as Q! P̂ . It is useful
to remember that the integral of Dajk in Eq. (21) contains the solid angle term which is evaluated as a surface
integral.

3.3. Displacement gradients at internal points

The boundary contour version of Eq. (6) has been derived before (Mukherjee and Mukherjee, 1998).
This equation is:

uk;n�x� � ÿ
XM

m�1

X27

a�13

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jnt dzt

�
Tÿ1

m

a
m

� �
a

�
XM

m�1

X12

a�4

I
Lm
�raij�z�Uik�z�uai�z�Rijk�z���jstzs dzt

� �
R;n�p�Tÿ1

m

a
m

� �
aÿ3

ÿ
XM

m�1

X12

a�4

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jnt dzt

�
R�p�Tÿ1

m

a
m

� �
aÿ3

�
XM

m�1

X3

a�1

I
Lm

Dajk�z�dzj

� �
S;n�p�Tÿ1

m

a
m

� �
a

�
XM

m�1

X3

a�1

I
Lm

Rajk�z��jnt dzj

� �
S�p�Tÿ1

m

a
m

� �
a

: �24�

3.4. Displacement gradients at internal points close to the boundary

As before, for the case of displacement evaluation at an internal point close to the boundary of a body
(see start of Section 3.2), one has two choices with respect to the strategy for evaluation of the solid angle.
Again, for the sake of uniformity, a boundary contour version of Eq. (8) is used here, together with
evaluation of the solid angle as a surface integral.

A boundary contour version of Eq. (8) is obtained in a manner that is quite analogous to the approach
discussed in Mukherjee and Mukherjee (1998). The ®rst step is to use the product rule to transform Eq. (8)
to the form:

uk;n�p� � uk;n�P̂ � ÿ
Z

oB
Uik�p;Q� rij�Q�

hh
ÿ rij�P̂ �

i
ÿ Rijk�p;Q� ui�Q�

h
ÿ u�L�i

ii
;n

nj�Q�dS�Q�

�
Z

oB
Uik�p;Q�rij;n�Q�
h

ÿ Rijk�p;Q� ui;n�Q�
h

ÿ ui;n�P̂�
ii

nj�Q�dS�Q�; �25�

where (see Fig. 3)

u�L�i � ui�P̂ � ÿ ui;`�P̂ �ẑ` �26�

with

ẑ` � y`�Q� ÿ x`�P̂� � y` ÿ x̂`: �27�
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The BCM version of Eq. (8) is

uk;n�p� � uk;n�P̂ � ÿ
XM

m�1

X27

a�13

I
Lm
�raij�ẑ�Uik�z�

�
ÿ uai�ẑ�Rijk�z���jnt dzt

�
T ÿ1

m

a
m

� �
a

�
XM

m�1

X12

a�4

I
Lm
�raij�z�Uik�z�

�
ÿ uai�z�Rijk�z���jstzs dzt

�
R;n�p�Tÿ1

m

a
m

� �
aÿ3

ÿ
XM

m�1
m62S

X12

a�4

I
Lm
�raij�ẑ�Uik�z�

�
ÿ uai�ẑ�Rijk�z���jnt dzt

�
R�P̂ � Tÿ1

m

a
m

��
ÿ bP̂

��
aÿ3

�
XM

m�1

X3

a�1

I
Lm

Dajk�z�dzj

� �
S;n�p�Tÿ1

m

a
m

�
ÿ S;n�P̂ �bP̂

�
a

�
XM

m�1
m62S

X3

a�1

I
Lm

Rajk�z��jnt dzt

� �
S�P̂ �Tÿ1

m

a
m

�
ÿ bP̂

�
a

: �28�

It should be noted that the ®rst, third and ®fth terms, with summations and integrals, on the right-hand
side of Eq. (28), arise from the ®rst integral in Eq. (25), whereas, the second and fourth arise from the
second integral in Eq. (25). Again, as in the case of Eq. (21), the last but one term on the right-hand side of
Eq. (28) is ``nearly weakly singular'' �O�1=r�p; P̂ �� as Q! P̂ �.

4. Nearly singular integrals in the BNM

4.1. Displacements at internal points close to the boundary

4.1.1. MLS interpolants
It is assumed that, for 3-D problems, the bounding surface oB of a solid body is the union of piecewise

smooth segments called panels. One each panel, one de®nes surface curvilinear coordinates (s1; s2). For 3-D
linear elasticity, for each component of the displacement vector u and traction vector s on oB, one de®nes
(Chati et al., 1999):

u�s� �
Xm

i�1

pi�sÿ sE�ai � pT�sÿ sE�a; �29�

s�s� �
Xm

i�1

pi�sÿ sE�bi � pT�sÿ sE�b: �30�

The monomials pi (see below) are evaluated in local coordinates (s1 ÿ sE
1 ; s2 ÿ sE

2 ), where (sE
1 ; s

E
2 ), are the

global coordinates of an evaluation point E. It is important to state here that ai and bi are not constants.
Their functional dependencies are determined later. The integer m is the number of monomials in the basis
used for u and s. Quadratic interpolants, for example, are the form:

pT�~s1; ~s2� � �1; ~s1; ~s2; ~s2
1; ~s

2
2; ~s1~s2�; m � 6; �31�

where ~si � si ÿ sE
i ; i � 1; 2.

The coe�cients ai and bi are obtained by minimizing the weighted discrete L2 norms:
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Ru �
Xn

I�1

w�dI� pT�sI
h

ÿ sE�aÿ ûI

i2

; �32�

Rs �
Xn

I�1

w�dI� pT�sI
h

ÿ sE�bÿ ŝI

i2

; �33�

where the summation is carried out over the n boundary nodes for which the weight function w�dI� 6� 0
(weight functions are de®ned in the next subsection of this article). The quantity dI � g�s; sI� is the length of
the geodesic on oB between s and sI and these n nodes are said to be within the domain of dependence of a
point s (evaluation point E in Fig. 4). Also, (sI

1 ÿ sE
1 ; s

I
2 ÿ sE

2 ) are the local surface coordinates of the
boundary nodes with respect to the evaluation point sE � �sE

1 ; s
E
2 ) and ûI and ŝI are the approximations to

the nodal values uI and sI . These equations above can rewritten in compact form as:

Ru � �P�sI ÿ sE�aÿ û�TW�s; sI��P�sI ÿ sE�aÿ û�; �34�

Rs � �P�sI ÿ sE�bÿ ŝ�TW�s; sI��P�sI ÿ sE�bÿ ŝ�; �35�
where ûT � �û1; û2; . . . ; ûn�; ŝT � �ŝ1; ŝ2; . . . ; ŝn�; P�sI� is an n� m matrix whose kth row is:

�1; p2�sk
1; s

k
2�; . . . ; pm�sk

1; s
k
2��;

and W is an n� n diagonal matrix with wkk � w�dk� ( no sum over k).
The stationarity of Ru and Rt, with respect to a and b, respectively, leads to the equations:

a�s� � Aÿ1�s�B�s�û; b�s� � Aÿ1�s�B�s�ŝ; �36�
where

A�s� � PT�sI ÿ sE�W�s; sI�P�sI ÿ sE�; B�s� � PT�sI ÿ sE�W�s; sI�: �37�
It is noted from above that the coe�cients ai and bi turn out to be functions of s. Substituting Eq. (36)

into Eqs. (29) and (30) leads to

Fig. 4. Nodes 1, 2 and 3 lie within the domain of dependence of E. The range of in¯uence of 4 is truncated at the edges of the body.
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u�s� �
Xn

I�1

UI�s�ûI ; s�s� �
Xn

I�1

UI�s�T̂I ; �38�

where the interpolating functions UI are:

UI�s� �
Xm

j�1

pj�sÿ sE��Aÿ1B�jI�s�: �39�

As mentioned previously, û and ŝ are approximations to the actual nodal values u and s. The two sets of
values can be related by ®nding the number of nodes in the range of in¯uence of each collocation node and
then evaluating the interpolating function at each of these nodes. Thus, carrying out this procedure for each
of the collocation nodes, one gets

�H�fûkg � fukg; �H�fŝkg � fskg; k � 1; 2; 3: �40�

Eqs. (40) relate the nodal approximations of the displacement and traction to their actual nodal values.

4.1.2. Weight functions
The basic idea behind the choice of a weight function is that its value should decrease with distance from

a node and that it should have compact support so that the region of in¯uence of the node (see Fig. 4) is of
®nite extent. A possible choice is the Gaussian weight function

w�d� � eÿ�d=ĉ�2 for d 6 1;
0 for d > 1;

�
�41�

where d � dI=d̂I � g�s; sI�=d̂I and ĉ is a constant. Here dI is the minimum distance, measured on the surface
oB, (i.e. the geodesic) between a point s and the collocation node I. In the research performed to date, the
region of in¯uence of a node has been truncated at the edge of a panel (Fig. 4) so that geodesics (and their
derivatives that are required for the stress BNM) need only be computed on piecewise smooth surfaces.
Finally, the quantities d̂I or can be adjusted such that approximately the same number of nodes get included
in the domain of dependence of any evaluation point E. Both these ideas have been successfully imple-
mented by Mukherjee's group (Chati and Mukherjee, in press; Chati et al., 1999, 2000).

4.1.3. Coupling of the BIE with MLS interpolants
MLS interpolants must be coupled with the continuous BIE (Eq. (4)) in order to create the continuous

BNM equation. Substituting the MLS interpolations of u and s from Eq. (38) into Eq. (4), and dividing the
bounding surface oB into Nc cells, one gets

uk�p� � uk�P̂ �

�
XNc

m�1

Z
oBm

Uik�p;Q�
XnQ

I�1

U1�Q�ŝiI

"
ÿ Tik�p;Q�

XnQ

I�1

UI�Q�ûiI

(
ÿ ui�P̂ �

)#
dS�Q�; �42�

where UI�Q� are the contributions from the Ith node to the ®eld point Q. Also, nQ nodes lie in the domain of
dependence of the ®eld point Q. The cells, which can be ¯at or curved, are needed for integration only. They
need not be compatible, in the sense that a given cell can be subdivided without a�ecting its neighbors in
any way. The geometry of a cell is interpolated in the usual way, such as with Q4 or T6 elements.
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4.2. Stresses at internal points close to the boundary

The stress BIE (Eq. (9)) requires the displacement gradients and stresses at the target point P̂ (in addition
to the usual displacements and tractions at ®eld points Q). Displacement gradients on the surface of the
body are obtained as part of the BNM solution of the original boundary value problem. This procedure,
adapted from Lutz et al. (1992) for the BEM, is described in detail in Chati et al. (2000) and is not repeated
here in the interest of brevity.

Using Eq. (38), the BNM version of the continuous stress BIE (Eq. (9)) becomes:

rij�p� � rij�P̂ � �
Z

oB
Dijk�p;Q�

XnQ

I�1

UI�Q�ŝkI

"
ÿ rkm�P̂ �nm�Q�

#
dS�Q�

ÿ
Z

oB
Sijk�p;Q�

XnQ

I�1

UI�Q�ûkI

"
ÿ uk�P̂ � ÿ uk;`�P̂ ��y`�Q� ÿ x`�P̂ ��

#
dS�Q�: �43�

It should be mentioned here that, for comparison purposes, numerical results are also presented in the
next section from the standard BNM. For this purpose, BNM versions of the BEM Eqs. (2) and (7) are
derived in analogous fashion.

5. Numerical results

The sample problem considered here is that of a hollow sphere subjected to internal pressure. The chosen
sphere has inner and outer radii a and b equal to 1 and 4 units, respectively. The internal pressure is 1 unit.
The elastic constant are Young's modulus E � 1 and Poisson's ratio m � 0:25, respectively. Numerical
results for internal displacement and stresses, from the standard as well as new BCM and BNM formula-
tions, are compared with exact solutions for this problem.

5.1. Boundary contour method results

5.1.1. Mesh
One-eighth of the hollow sphere is modeled here. The boundary elements are curved triangular CIM-9

elements described in Mukherjee et al. (1997). Sixty four elements are used on each of the ®ve (two curved
and three ¯at) faces of the one-eighth sphere±for a total of 320 elements. A generic mesh of this type is
shown in Mukherjee et al. (1998).

5.1.2. Internal displacement and stresses
The radial displacement, at internal points along a radius of the hollow sphere, from the standard

and new BCM methods, are compared with the exact solution (Timoshenko and Goodier, 1970) in Fig.
5. Enlarged details, corresponding to the left and right ends of the curve, appear in Figs. 6 and 7, re-
spectively. The results from the new BCM (Eq. (21)) are seen to be very accurate everywhere, while those
from the standard BCM (Eq. (18)) exhibit signi®cant errors near the inner and outer surfaces of the
sphere.

Similiar results from the new BCM (Eq. 28), for the radial and circumferential stresses as functions
of radius, are compared with the exact solutions in Fig. 8. Corresponding results from the standard BCM
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(Eq. (24)), at internal points near the inner surface of the sphere, appear in Fig. 9 (radial stress rrr and Fig.
10 (circumferential stress rhh), respectively. Numerical results from the standard BCM exhibit large errors
(see Figs. 9 and 10), whereas results from the new BCM faithfully track the exact solutions in both cases.

Fig. 5. Radial displacement as a function of radius from the new and standard BCMs, together with the exact solution.

Fig. 6. Radial displacement as a function of radius from the new and standard BCMs, together with the exact solution, for points very

close to the inner surface.
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5.2. Boundary node method results

5.2.1. Cell con®guration
The entire hollow sphere is modeled in this case. 72 quadratic T 6 triangles are used on each surface of the

hollow sphere, together with one cetroidal node per triangle. Further details are available in Chati et al.
(1999).

Fig. 7. Radial displacement as a function of radius from the new and standard BCMs, together with the exact solution, for points very

close to the outer surface.

Fig. 8. Radial and circumferential stresses as functions of radius, from the new BCM, together with exact solutions.
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5.2.2. Internal displacement and stresses
Analogous results from the BNM are presented in Figs. 11±13. The radial displacement, as a function of

radius, from the standard and new BNM methods, are compared with the exact solution of the problem in
Fig. 11. Again, the results from the new method are very accurate at all the internal points at which these

Fig. 9. Radial stress rrr as a function of radius, from the new and standard BCMs, together with the exact solution, for points very close

to the inner surface.

Fig. 10. Circumferential stress rhh as a function of radius, from the new and standard BCMs, together with the exact solution, for points

very close to the inner surface.
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results have been calculated, whereas the results from the standard approach exhibit large errors near the
inner surface of the sphere and some errors near the outer surface.

The radial and circumferential stresses, from the new BNM Eq. (43) are compared with the exact so-
lution in Fig. 12. The agreement between the solutions is excellent throughout, including at points that are
very close to the boundary. Finally, the stress solutions from the standard BNM are also included in Fig. 13.

Fig. 11. Radial displacement as a function of radius from the new and standard BNMs, together with the exact solution.

Fig. 12. Radial and circumferential stresses as functions of radius, from the new BNM, together with the exact solutions.
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Details near the inner surface of the sphere are presented in Table 1. It is observed that the standard BNM
stress solutions are meaningless very near the inner surface of the sphere, and an algorithm for improving
these results, such as the new BNM presented in this article, is absolutely essential in this case.

6. Concluding remarks

The primary contribution of this article is the presentation of a new algorithm for regularization of
nearly singular and nearly hypersingular integrals, that arise when boundary integral equations are em-
ployed to calculate displacements and stresses, in linear elasticity, at internal points that are situated near
the bounding surface of a bulky body. The idea is ®rst presented in the context of the standard BEM, and is
then extended to the BCM and the BNM. The proposed method is very easy to implement into a standard

Fig. 13. Radial and circumferential stresses as functions of radius, from the new and standard BNMs, together with the exact solutions.

Table 1

Radial and circumferential stresses as functions of radius, from the new and standard BNM, together with the exact solutions, for

points very close to the inner surface

Radius (r) rrr rhh

Standard New Exact Standard New Exact

1.01 4.99057 ÿ0.98020 ÿ0.97012 3.68714 0.51168 0.50887

1.03 5.43126 ÿ0.92753 ÿ0.91379 1.08215 0.49365 0.48071

1.05 3.76287 ÿ0.85789 ÿ0.86168 ÿ0.35304 0.46201 0.45465

1.07 1.39290 ÿ0.79589 ÿ0.81338 ÿ0.36737 0.42834 0.43050

1.09 ÿ0.18719 ÿ0.74915 ÿ0.76857 ÿ0.01546 0.40084 0.40809

1.11 ÿ0.90056 ÿ0.71229 ÿ0.72693 0.24717 0.37928 0.38727
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BEM (or BCM or BNM) computer code. Numerical results for an example problem of a sphere under
internal pressure illustrate the power of the new method.

The new method can be used universally for all internal points, both near and far from the boundary of a
bulk body. The method has also been used for the 3-D Laplace's equation in Chati et al. (1999) and can be
extended to other problems. This new method, which is easily applicable to bulky bodies, complements the
elegant approach for thin bodies that has been presented earlier by Liu (1998). It is recommended that the
approach presented in this article be routinely employed whenever boundary integral based methods are
used to calculate variables at internal points that are close to the boundary of a bulky body. This method, in
its current form, is not recommended for thin shell problems. It is expected, however, that it can be ex-
tended, in future, for use in the analysis of such problems.
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Appendix A. Displacement BIE and stress BIE kernels

The Kelvin kernels for the displacement BIE (1) for 3-D linear elasticity are

Uik � 1

16pG�1ÿ m�r ��3ÿ 4m�dik � r;i r;k �;

Rijk � ÿ 1

8p�1ÿ m�r2
��1ÿ 2m��r;i djk � r;j dik ÿ r;k dij� � 3r;i r;j r;k �:

The traction kernel in Eq. (2) is:

Tik � Rijknj � ÿ 1

8p�1ÿ m�r2
f�1
�

ÿ 2m�dik � 3r;i r;k g or
on
� �1ÿ 2m��r;i nk ÿ r;k ni�

�
:

The corresponding kernels for the stress BIE (7) are:

Dijk � Eijmn
oUkm

oxn
� 1

8p�1ÿ m�r2
��1ÿ 2m��dikr;j�dkjr;iÿdjir;k � � 3r;i r;j r;k �;

Sijk � Eijmn
oTkm

oxn

� G
4p�1ÿ m�r3

f�1
�

ÿ 2m�dijr;k � m�dikr;j � djkr;i � ÿ 5r;i r;j r;k g3 or
on
� 3m�nir;j r;k � njr;k r;i �

ÿ �1ÿ 4m�nkdij � �1ÿ 2m��3nkr;i r;j � njdki � nidjk�
�
:

In the above, r is the distance between a source point x and a ®eld point y, G and m are the shear modulus
and Poisson's ratio, respectively, dik are the components of the Kronecker delta and, k � o=oyk. Also, the
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components of the normal as well as the normal derivative or=on are evaluated at the ®eld point y and Eijmn

are components of the elasticity tensor for a homogeneous isotropic elastic solid.
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